
Space Upper Bounds for Directed Graph Connectivity

Huanran Li

May 2, 2020

Abstract

We survey the following algorithms for improving the space upper bound of STCON problem.
(1) A polynomial-time, n/2Θ(

√
log n)-space algorithm for directed graphs from Barnes, Buss,

Ruzzo, and Schieber. (2) A polynomial-time O(log2 n/ log log n)-space algorithm for Reach-

Unambiguous graphs from Allender and Lange. (3) A polynomial-time Õ(nε)-space algorithm

for Unique-Path graphs from Kannan, Khanna, and Roy. (4) A polynomial-time Õ(
√
n)-space

algorithm for Planar graphs from Asano, Kirkpatrick, Nakagawa, and Watanabe. (5) A log-space
reduction on Surface-embedded graphs with genus g from Stolee and Vinodchandran.

Contents

1 Introduction 2

2 Preliminaries 2

3 Algorithms on Directed Graphs 3
3.1 Recursive Short Path (SPR) . 3
3.2 Combination of BFs and SPR . 4

4 Algorithm on Reach-Unambiguous Graphs 6

5 Algorithm on Unique-Path Graphs 8

6 Algorithm on Planar Graphs 11
6.1 Preliminaries . 11
6.2 Algorithm . 13

7 Algorithm on Surface-Embedded Graphs 16

8 Open Problems 18

9 Acknowledgement 19

1

1 Introduction

In this survey, we focus on directed st-connectivity (STCON) problem, where given a directed
graph G with two vertices s and t, we want to find if there is a path started from s and ended at t.
The STCON problem can be solved with standard algorithms such as Depth First Search (DFS)
and Breadth First Search (BFS) in polynomial time. For a graph with n vertices and m edges,
these algorithms will take O(m + n) time and O(n log n) space. Improving the space complexity
upper bound has been researched for decades. In this survey, we are going to summarize several
solutions on either directed graphs or subsets of directed graphs.

First, we are going to introduce some terms necessary in the preliminary section. In section 3, we
introduce Short Path Recursive (SPR) algorithms, which marks the reachable nodes within range Lr

in a given destination set that contains dn/ke nodes in O(krLLr∗n2/k2) time and O(r(n/k+L log k))
space. Then, a combination of SPR and BFs will be introduced such that STCON can be solved in
O(krLLr ∗ n2/k2) time and O(r(n/k + L log k)) space [BBRS98]. Based on the original paper, we
also made a few modifications in the Combination of BFs and SPR to achieve the final time upper
bound.

In sections 4 and 5, we introduce two algorithms that are primarily designed for Reach-
Unambiguous graphs and Unique-path graphs. For Reach-Unambiguous graphs, Allender and
Lange’s algorithm, Graph Remap, aims to shrink the graph recursively in polynomial time and
O(log2 n/ log log n) space [AL98]. For Unique-Path graphs, STCON can be solved by Kannan’s
D-Reach algorithm in nO(1/ε) time with O(nε/ε) space [KKR08]. This algorithm was reproduced
based on his base algorithm in O(

√
n) space and word description in the original paper.

In sections 6 and 7, we investigate algorithms for planar graphs and surface-embedded graphs.
For planar graphs, we combined the results from Asano et al.’s paper [AKNW14] and Imai et al.’s
paper [INP+13] to solve the problem. The algorithms will recursively find the appropriate edge
that separates the graph into two components and seek the connectivity from the edge to the sub-
area. For the surface-embedded graphs with g genus, the algorithm from Stolee and Vinodchadran
performs a reduction to create another directed subgraph that has O(m + g) vertices in log-space
[SV10].

2 Preliminaries

Given a directed graph G, we will use V (G) and E(G) to denote the set of vertices and edges
in G. If G has n nodes, we assume V to be {v1, v2, ..., vn}. For any edge e ∈ E(G) that has a
direction from x to y, we call x the tail denoted by Tail(e), and y the head denoted by Head(e).

For each pair of nodes (x, y), let d(x, y) be the length of the shortest path between x and y. If
x and y are not connected, d(x, y) is infinite; d(x, x) is 0. The two successors of an inner node x
are denoted by L(x) and R(x). We let T (x) denote the tree rooted at x.

Definition 1 ([AL98]). G is called unambiguous if there is at most one path from s to t. G is
called strongly unambiguous, or a Mangrove, if for any pair (x, y) of nodes there is at most one
path leading from x to y. G is called reach-unambiguous if there is at most one path from s to any
vertex v ∈ V (G).

Definition 2 ([KKR08]). A path where no intermediate vertex is repeated is called a simple path.
G is called unique-path with respect to a source vertex s if there is at most one simple path from s
to any vertex v ∈ V (G).

2

Definition 3 ([AKNW14] [SV10]). G is called planar if it can be drawn on a plane so that the
edges intersect only at end vertices. G is called 2-cell embeddings if it is embedded on a surface S
where every face is homeomorphic to an open disk.

3 Algorithms on Directed Graphs

In this section, we are going to introduce two algorithms that both come from [BBRS98]. The
first algorithm, Recursive Short Path (SPR), introduces a space-efficient way to find all reachable
nodes in a given set using the recursive method. The second algorithm Combines SPR and BFs to
achieve a better log-space upper bound with polynomial time.

3.1 Recursive Short Path (SPR)

This algorithm acts as a helper function for the major algorithm that will be introduced later.
It takes two sets ds and dt, each of which contain at most n/k nodes. Vs will be a dn/ke-bit vector
that marks any source node for the search in ds. By recursively calling itself with r decreased by 1,
SPR could return a dn/ke-bit vector that marks any reachable node in dt within Lr distance from
source nodes.

Algorithm 1: Short Path Recursive(SPR)

Input: k: number of sets, n ≥ k ≥ 1
L: number of iterations, L ≥ 1
r: searching range, r ≥ 1, Lr ≤ n
ds: list of dn/ke nodes that contains source nodes
dt: list of dn/ke nodes where any reachable node contained will be indicated by
the return set Vt
Vs: dn/ke-bit vector that marks source nodes contained in ds

Output: Vt: dn/ke-bit vector that marks any reachable node in dt
1 Creat V0, V1, and Vt three dn/ke-bit vectors. Set all bits in Vt to zero.
2 if r = 0 then
3 forall u in ds marked in Vs and v in dt do
4 if (u, v) is an edge then mark v in Vt ;

5 else
6 forall possible sequence 〈d0 = ds, d1, ..., dL−1, dL = dt〉 do
7 V0 ← Vs
8 for i = 1 to L do
9 Vi mod 2 ← SPR(k, L, r − 1, di−1, di, V(i−1) mod 2)

10 Set all bits in Vt that are set in VL mod 2

11 return (Vt)

Theorem 1 ([BBRS98]). For arbitrary integers r, k, and L, such that r ≥ 1, L ≥ 1, n ≥ 1, and
Lr ≤ n, the recursive short paths algorithm SPR can search to distance Lr in time O(krLLr ∗n2/k2)
and space O(r(n/k + L log k))

Proof of Correctness. Base Case: If r = 0, line 2-6 will be executed, which marks any node that is
connected by the nodes marked in Vs. Therefore, the SPR will output the correct result.

3

Inductive Hypothesis: For 0 ≤ r ≤ k, assume SPR(k, L, r, ds, dt, Vs) will output Vt with marked
nodes that are at most Lr distance away from the nodes marked in Vs.

Inductive Step: For r = k + 1, SPR(k, L, k, ds, dt, Vs) will be called L times for each possible
combination. Each calling time will result in saving the nodes that are at most Lr distance further
away from the nodes in Vs. Finally, after L times, the nodes marked in VL mod 2 will be at most
L ∗Lr distance from Vs. Therefore, the SPR will return the correct result with the nodes that are
at most Lr+1 distance away from Vs

Proof of Space Complexity. We know that each set di will have at most k nodes. For saving one
single sequence of 〈d0 = ds, d1, ..., dL−1, dL = dt〉, we need O(L log k) space. For saving V0, V1, and
Vt, we need O(n/k) space. So, for a single recursive call, there will be O(n/k+L log k) local space
required. Since r is decreasing by 1 each time, there will be at most r calls holding in the stack.
Therefore, the total space upper bound will be O(r(n/k + L log k)).

Proof of Time Complexity. For the base case, it will cost O((n/k)2) time for checking any pair
(u, v) for u ∈ ds and v ∈ dt, since ds and dt both have at most n/k nodes.

For the inductive step, there will be kL different combinations of test sequences and each
sequence calls SPR(r − 1) L times . Besides, it costs O(n/k) times to execute line 10. Therefore,
the time complexity could be represented as following equation:

T (j) =

{
O((n/k)2) j = 0

O(kLL(T (j − 1) + cn/k)) j > 0

By solving this equation, we find the time upper bound as

O(krLLr ∗ n2/k2)

.

3.2 Combination of BFs and SPR

Algorithm 2 shown below is the main algorithm for STCON. The idea of this algorithm is to
divide the whole graph into n/Lr classes based on each node’s shortest distance to s. For a group
of nodes that have the same shortest distances to s, we will refer to the group as a level. After
traversing each class, a partial set is constructed with all reachable nodes within n/Lr levels that
have exactly Lr distances in between. The first level will have j distance from node s. We set
j ∈ [0, Lr − 1], and therefore, there will be Lr different partial sets that could be constructed. The
partial set will be abandoned if its size is over n/Lr. Finally, if we find any partial set that has the
less than n/Lr nodes, we are going to search if t is within Lr distance of all nodes in the founded
partial set.

The algorithm consists of two major for-loops, which are lines 3-6 and lines 7-23. For the
simplicity of the following proof, we call it the first and second major for-loop. The first major
loop adds all vertices that have the shortest distance j from s. The second major loop will add
reachable nodes in one level to the partial set each time. The ”if” statements in line 5 and 21
are where the space usage is directly constrained. Both perform the same function of skipping the
current j when the size of the partial set is off the bounds n/Lr.

4

Algorithm 2: Combination of BFs and SPR [BBRS98]

Input: s: source node
t: termination node
G: the graph with n nodes

Output: Connectivity: Connected/Not Connected
1 for j = 0 to Lr − 1 do
2 S ← {s}

/* First major for-loop */

3 forall vertices,v do
4 if d(s, v) = j then
5 if |S| > n/Lr then try next j ;
6 else add v to S;

/* Second major for-loop */

7 for i = 1 to bn/Lrc do
8 S′ ← ∅
9 for i1 = 0 to k − 1 do

10 Si1 ← {all vertices whose vertex number mod k = i1}
11 P ← ∅
12 for i2 = 0 to (k − 1)/Lr do
13 Si2 ← ith2 block in S

14 Q← {1|Si2
|}

15 if |Si2 | < dn/ke then
16 Insert (dn/ke − |Si2 |) of ’0’s in the back of Q
17 Insert (dn/ke − |Si2 |) nodes that are not in S in the back of Si2
18 A←{all vertices in Si1 within distance Lr of a vertex in Si2} // call

SPR(k, L, r, Si2 , Si1 , Q)
19 B ← {all vertices in Si1 within distance Lr − 1 of a vertex in Si2}
20 P ← P ∪ (A−B)

21 if |S|+ |S′ ∪ P | > n/Lr then try next j;
22 else S′ = S′ ∪ P ;

23 S ← S ∪ S′
24 if t within distance Lr of a vertex in S then return Connected ;
25 else return Not Connected ;

Theorem 2 ([BBRS98]). The combined algorithm of modified BFs and Recursive Short Path solves
STCON in space O((n log n)/Lr + r(n/k+L log k)) and time O(n3krL) for any integer r, k, and L
that satisfy n ≥ k ≥ 1, r ≥ 1, L ≥ 1, and Lr ≤ n.

Proof of Correctness. In the following proof, we will prove the correctness separately on whether a
partial set is successfully built or not (i.e. line 5 and 21 never return a True when a partial set is
successfully built).

Claim 2.1. If the ”if” statement returns false every time at line 5 and 21, theorem 1 holds.

Proof of Claim 2.1. If the ”if” statement at line 5 always returns false, all vertices that have dis-
tances j to s will be added into S.

5

Lines 18 - 20 will save all nodes in Si1 that have the shortest distance Lr from any nodes in Si2 ,
which is a subarray of S. If the ”if” statement at line 21 always returns false, two inner for-loops
at line 9 and line 12 will iterate all possible combinations of Si1 and Si2 from k sets in the graph.
Hence, all nodes in the graph will be searched and at every iteration, only the nodes that have
distance Lr from any saved nodes in the partial set will be added into the set.

Since we know j ∈ [0, Lr], we can conclude for any pair of nodes (u, v) where u ∈ S and v ∈ G,
d(u, v) ≤ Lr. Therefore, lines 24-25 will successfully determine if t is reachable from s.

Claim 2.2. If the ”if” statement returns a True at either line 5 and 21, there must be another
partial set that has a size less than or equal to n/Lr.

Proof of Claim 2.2. We know that there will be Lr different sets that do not intersect with each
other. If we assume that all sets have sizes larger than n/Lr, the total size of G will be greater
than n, which contradicts with the fact that n = |G|.

Based on Claim 2.1 and 2.2, we can conclude that regardless of whether the current partial set is
built or abandoned, there will be at least one partial set that satisfies |S| ≤ n/Lr. The reachability
of t will always be determined based on this partial set.

Proof of Space Complexity. We need log n bits for each node. To save the whole partial set, we
need O((n log n)/Lr) space. In addition to the space usage from SPR, which is O(r(n/k+L log k)),
we have O((n log n)/Lr + r(n/k + L log k)) for the space upper bound.

Proof of Time Complexity. We know that every call of SPR will take O(krLLr ∗n2/k2) time. There
will be at most k2n/Lr calling time, which results in O(krLLr ∗ n2/k2 ∗ k2n/Lr) = O(n3krL) for
the time upper bound.

4 Algorithm on Reach-Unambiguous Graphs

Graph Remap was first introduced in [AL98]. It takes three inputs, which are node s, node t,
and integer r. Node s represents the root of the tree that we are going to shrink. Node t is the
destination node, and integer r is the maximum depth of the current tree that has been searched.
In the algorithm, we denote Tr(z) = {y ∈ V |d(z, y) ≤ r} (i.e. the subtree that only contains the
nodes that are within a distance r from node z). LCA(M) represents the least common ancestor
of all the nodes in the set M .

We denote f(s) to be the ”special root” from the tree rooted by s. The ”special root” could
be s itself when all nodes in T (s) can be reviewed. Otherwise, the ”special root” will be a node
z where z ∈ T (s) such that T (z) is the smallest tree whose nodes cannot be reviewed. We also
marked s with ϕ′(s) based on the result of the search. Depending on whether t is found or not in
T (s), ϕ′(s) will be marked with Connected/Not Connected. If the search cannot be completed,
ϕ′(s) will be marked with Unknown.

Finally, based on Algorithm 3, we construct a new graph G′ by setting L′(x)← f(L(f(x))) and
R′(x)← f(R(f(x))) when ϕ(x)′ = Unknown. The construction starts from x = s and recursively
keep finding children nodes for the added nodes.

6

Algorithm 3: Graph Remap

Input: s: source node
t: termination node
r: searching range, 1 ≤ r ≤ log n
T (s): Reach-Unambiguous graph rooted at s

Output: f(s): the special node of s
ϕ′(s): Connectivity of s

1 curr ← s
2 M ← {y ∈ Tr(curr)|d(curr, y) = r, ϕ(y) = i}
3 while Connected /∈ ϕ(Tr(curr)) and M 6= ∅ and LCA(M) 6= curr do
4 curr ← LCA(M)
5 M ← {y ∈ Tr(curr)|d(curr, y) = r, ϕ(y) = Unknown}
6 if + ∈ ϕ(Tr(curr)) then
7 ϕ′(s)← Connected
8 f(s)← s

9 else if M = ∅ then
10 ϕ′(s)← Not Connected
11 f(s)← s

12 else
13 ϕ′(s)← Unknown
14 f(s)← curr

Theorem 3 ([AL98]). RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n).

Proof. To solve the connectivity problem on the Reach-Unambiguous graph in O(log2 n/ log log n)
space, Graph Remap needs to be called multiple times recursively. We will first prove the space
saved by constructing a shrunk graph once. Based on that, the final space upper bound can be
constructed by calculating how many recursion processes will exist at the same time.

Claim 3.1. For each x ∈ V , and ϕ′(x) = Unknown, we have

|T (L(f(x)))| ≥ 2r + 1

Proof of Claim 3.1. Since ϕ′(x) = Unknown, we know that there is a set M = {y ∈ Tr(z)|d(z, y) =
r, ϕ(y) = Unknown} and M 6= ∅. Moreover, f(x) = z = LCA(M).

Given that M 6= ∅, it can be proved that T (z) has r depths excluding the leaf nodes. Therefore,
T (L(z)) will have r depths including the leaf nodes. Since G will be a complete tree, the claim 3.1
holds and the same holds for the right leaves.

Claim 3.2.
|G′| ≤ |G|/r

Proof of Claim 3.2. From the rule of G′ construction and Claim 3.1, we are given that when ϕ(x)′ =
Unknown,

L′(x) = f(L(f(x)))

|T (L(f(x)))| ≥ 2r + 1

7

Assume that L′(x) is a leaf in G′, then L′(x) in G′ will represent at least 2r + 1 nodes in G,
which means that for every leaf in G′, we ignored at least 2r nodes from G.

Given that at least half of the nodes in the complete tree G′ will be leaf nodes, we have

|G′|/2 ∗ 2r ≤ |G|

which can be simplified as
|G′| ≤ |G|/r

Based on Claim 3.2, we can determine the connectivity by checking ϕ(s) = Connected/Not
Connected when we have |G′| = 1. This can be done by repeating the process of shrinking for
O(logr n) times. By setting r = log n, we have O(log n/ log logn).

Given that each shrinking process will take r+O(log n) space, the final space upper bound will
be O(log2 n/ log logn).

5 Algorithm on Unique-Path Graphs

This section will introduce three algorithms, which are D-Reach and its helper functions
backtrack and discovery. All algorithms are from the paper [KKR08]. The main algorithm
D-Reach is mostly based on DFS. By continuously exploring new nodes and backtracking, the
algorithm can have less space usage while maintaining a polynomial time complexity. However, to
achieve a O(n

ε

ε) space upper bound, DFS is not space-efficient enough.
The improvement Kannan and his fellows have is by keeping a set of landmarks instead of

keeping a stack for the entire searching path. The landmarks are vertices that have exactly r/nε

distance between them so that all landmarks can be stored within space O(nε). However, this
improvement will also introduce two other problems: how to backtrack and how to determine
whether a new reachable node has already discovered on the path. These problems can be eliminated
by introducing a recursive procedure, which will be explained in algorithms later.

Algorithm 4: backtrack(curr, r)

Input: curr: current node
r: search range

Output: prev: the parent of the current node along the path from s to curr
1 forall vertex v ∈ Parents(curr) do
2 s← last element in landmarks
3 result← D-Reach(s, {curr}, G− (v, curr), r)
4 if result = Not Connected then
5 return v

6 return

8

Algorithm 5: D-Reach(s,{t},G, r)

Input: s: Source Node
{t}: a set of Termination Nodes
G: Unique-Path graph
r: searching range

Output: result : Connected/Not Connected
1 n← |G|; curr ← s; child← NULL; result← Unknown;
2 distance← 0; landmarks← {s}; TotalDistance← 0;
3 if d ≤ nε then
4 Perform a d-Bounded DFS
5 return result

6 while result = Unknown do
7 if child is the last vertex in Successors(curr) or TotalDistance > r then
8 if curr = s then result = Not Connected ;
9 child← curr

10 distance← distance− 1
11 TotalDistance← TotalDistance− 1
12 if distance < 0 then
13 Remove curr(last element) to landmarks
14 distance← dr/nεe − 1

15 curr ← Backtrack(curr, r/nε)
16 if curr then

17 else
18 if child = NULL then
19 next← first vertex in Successors(curr)
20 else if child is not the last vertex in Successors(curr) then
21 next← next vertex after child in Successors(curr)
22 if discovery(curr, next) = Connected then
23 child← next
24 else
25 if next ∈ {t} then result = Connected;
26 curr ← next
27 child← NULL
28 distance← distance+ 1
29 TotalDistance← TotalDistance+ 1
30 if distance = dr/nεe then
31 Append curr to landmarks
32 distance← 0

33 return result

9

Algorithm 6: discovery(curr, next, r)

Input: curr: current node
next: the node that needs to be checked to see if it is on the path from s to curr
r: search range

Output: True/False
/* Instead of returning Connected or Not Connected, D-Reach-All will find

all connected nodes and return a list that contains them. */

1 M ← D-Reach-All(next, landmarks ∪ {curr}, G, r)
/* Assume M is sorted with the respect to the distance from s with the

closest node being in the first place */

2 p← |M |
3 if p = 0 then return False ;
4 else
5 z ←M [p− 1] // furthest node from s in M
6 if z = s then return False;
7 else if z = curr then
8 return D-Reach(M [p− 3], {next},G, 2r)
9 else

10 return D-Reach(M [p− 2], {next},G, r)

Theorem 4 ([KKR08]). For any ε ∈ (0, 1], STCON is solvable in nO(1
ε
) time with O(n

ε

ε) space in
unique-path graphs.

Proof of Time Complexity. We denote T (m,n, d) to be the time upper bound for the D-Reach with
unique-path graph G, which has n nodes and m edges. d will represent the largest distance the
algorithm is allowed to search. For the original call, d = n− 1. Note that D-Reach-All introduced
in discovery should have the same time upper bound as D-Reach.

For each recursive call, we know that there will be at most m calls of backtrack and discovery.
Each time backtrack is called, D-Reach will be executed multiple times. We don’t know how many
times D-Reach will be executed within each backtrack, but the total time will be m. This is because
every time, a unique edge will be deleted before calling D-Reach. For the discovery, there will be
1 D-Reach-All and 1 D-Reach with either r or 2r.

Therefore, we have the following formula:

T (m,n, n) ≤ 2mT (m,n, n1−ε) +mmax(T (m,n, n1−ε, T (m,n, 2n1−ε)) +O(m+ n)

From the algorithm, we also know the base case time upper bound:

T (m,n, nε) = O(n+mnε) = (n+m)O(1)

Based on those two formulas, we have:

T (m,n, n) ≤ (n+m)O(1+ 1
ε
)

T (m,n, n) ≤ nO(1
ε
)

10

Proof of Space Complexity. At each recursion call, we need O(nε) space for saving the landmarks
and performing a bounded DFS if necessary. We know that every time we call the recursion inside
D-Reach, we divide the search range r by nε. With initial r = n, we have depth ≤ 1

ε . Therefore,
the final space upper bound will be O(n

ε

ε).

6 Algorithm on Planar Graphs

The main idea of the algorithm is to recursively find the connection between separators, to label
the reachable nodes at every round. The separator is formed with a list of cycles, which divide
the graph into two sub-graphs. The procedure to generate those separators(S) is called CycleSep,
which requires the input graph to be triangulated. Therefore, an additional list(T) of edges has to
be added to the graph by AddTri in order to find the separator. First, we explain the necessary
terminology and background that strongly follows [INP+13] and [AKNW14]. Then, we introduce
the algorithms CycleSep and ExtendReach.

6.1 Preliminaries

We first introduce the terms and backgrounds for the algorithm CycleSep. Given a planar and
triangulated graph G, we define the face-vertex graph G′ = (V ′, E′), where V ′ is a set of triangular
faces, and E′ is a set of face pairs that share the same vertex in G. To distinguish from the regular
graph G, we denote tr-vertex ∈ V ′ and tr-edge ∈ E′. Assuming there are two tr-vertices f1
and f2, we let tr-path(f1, f2) denote a sequence of tr-vertices from f1 to f2 such that for every
adjacent pair of tr-vertices in the sequence, there is a tr-edge between them. Accordingly, we have
tr-dist(f1, f2) = min | tr-path(f1, f2)|.

If two tr-vertices share the same edge e ∈ E, we call them edge-connected. A region R is a list
of tr-vertices such that for any two tr-vertices u, v ∈ region, (i) there is a sequence 〈f1, f2, ..., fi〉
where (u, f1), (fj−1, fj), and (fi, v) are edge-connected for j ∈ [2, i], (ii) fj ∈ R for j ∈ [1, i]. The
boundary B(R) of the region R is a set of edges that only lies on a single tr-vertex in R.

Definition 4. For any tr-vertex f ∈ V ′, the k-neighborhood of f (Nk) represents a set consisting
of the closest k number of tr-vertices to f in G′. If there are ties at the farthest distance, the
tr-vertex with a smaller index will be selected first.

Definition 5. A k-maximal independent set I is a set of tr-vertices such that (i) for every f1, f2 ∈
I, Nk(f1) ∩Nk(f2) = ∅, (ii) for every f1 /∈ I, there exists a f2 ∈ I such that Nk(f1) ∩Nk(f2) 6= ∅.

From the above definition, we know that the size of k-maximal independent set is O(n/k). A
straight forward greedy algorithm can be implemented to calculate the k-maximal independent set.
Thereby, we have the following conclusion.

Lemma 5. A k-maximal independent set can be calculated with input planar graph G in polyno-
mial time and Õ(n/k + k) space.

We denote a set of tr-vertices with l(f, r) such that for all v ∈ l(f, r), tr-dist(f, v) = r. For a
given region R, we let tr-dist(R, f) = ming∈R{tr-dist(g, f)}. Now we can represent the core and
Voronoi region of f with the following definition.

Definition 6. The core(f) is defined as a union of set l(f, r) for r ∈ [1, rmax], where rmax =
max{r|l(f, r) ⊂ Nk(f) and |l(f, r)| ≤

√
k }.

11

Definition 7. For any f ∈ k-maximal independent set I, we can determine if a tr-vertex g is in
the Voronoi region of f by following two conditions: (i) g ∈ Nk(f), (ii) g /∈ Nk(fi) for any fi ∈ I,
and tr-dist(fi, g) is the smallest at fi = f .

Note: For any tr-vertex g, if there is more than one fi that satisfies condition (ii), then g
belongs to each of their Voronoi regions. g will be called as a V oronoi vertex if g belongs to three
or more Voronoi regions.

Next, two essential theorems will be introduced from [LT94] and [Mil96], which will be referred
to in the algorithm CycleSep.

Theorem 6 ([LT79]). Given a planar graph G that has non-negative vertex costs summing to no
more than one, Lipton and Tarjan’s algorithm can find a 2/3-separator with its size no more than
2
√

2
√
n. This algorithm can be implemented in polynomial time.

Theorem 7 ([Mil84] [INP+13]). If G is an embedded triangulated planar graph whose weights sum
to 1 and no face has weight larger than 2/3, then there exists either a vertex that is a weighted
separator or a simple 2/3-cycle separator of size at most 2

√
2n. Further, the separator can be found

in linear time and O(d
√
m) space, where d is the maximum face size, and m is the number of faces.

Now we introduce preliminaries for the algorithm ExtendReach. The separator generated by
CycleSep can have at most csep

√
n vertices. Furthermore, two new subsets derived from this

separator V 0, V 1 will have the following property for b ∈ {0, 1}:

|V b| ≤ 2

3
|V |+ csep

√
|V |

By combining a separator with its additional list and a binary variable that indicates the side
of the separator, we can represent a sub-graph surrounded by the separator. In detail, the form of
this triple is (b, S, T) where b ∈ [0, 1], S = {C1, C2, ..., Ch}, T is a list of edges, and C contained by
S is a list of nodes.

Since the algorithm will recursively find more separators, the sequence of separators is necessary
for determining the new sub-graph. Thereby, if we denote the sub-graph generated by a separator
as Gnew = [G]bS,T , then after d recursions, the sub-graph will be:

Gnew =

[
...
[
[G]b1S1,T1

]b2
S2,T2

...

]bd
Sd,Td

In order to constructGnew, we letM denote a sequence of triples asM = 〈(b1, S1, T1), (b2, S2, T2),
..., (bd, Sd, Td)〉. At every recursion, we may need to add a new separator into the sequence, and
we will mark this action with M ∪ newTriples. The sub-graph Gnew will be represented as [G]M
to indicate that it is constructed from the sequence M . Moreover, we use G[U] to represent the
sub-graph of G induced by U , where U ⊂ V (G).

We will utilize the universal sequence σs to help with reducing searching time. With � repre-
senting sequence concatenation, it is defined as:

σs =

{
〈1〉 s = 0

σs−1 � 〈2s〉 � σs−1 s > 0

12

6.2 Algorithm

Lemma 8. Additional edges for the triangulated graph can be calculated by AddTri in polynomial
time and O(log n) space.

Proof. From Allender and Mahajan [AM04], we know that the planarity test and graph embedding
could be reduced to undirected graph reachability problem. Thereby, by the algorithm UReach
introduced by Reingold [Rei08], a graph’s planar embedding can be calculated in O(log n) space
and polynomial time. With the planar embedding, it is not hard to find the additional edges that
make the graph triangulated. In detail, for each face, we are adding edges between the smallest
indexed vertex to all other vertices on the face.

Theorem 9 ([INP+13]). Given a planar undirected triangulated graph G, an (8/9)-separators can
be calculated by CycleSep in Õ(

√
n)-space upper bound and polynomial time.

Note: By applying the algorithm multiple times, the larger side of the (8/9)-separators can be
called to split again, which finally will produce a (2/3)-separators.

Algorithm 7: CycleSep

Input: G(V,E): Planar and Triangulated graph
Output: result: Cycle Separator

1 I ← k-maximal independent set
2 forall f ∈ I do
3 if |V (f)| ≥ n/3 then
4 Apply the algorithm of Lipton and Tarjan[LT79] on BFS tree of V (f) rooted at f
5 return result

6 Initialize empty subgraph H(VH , EH)
7 forall f ∈ I do
8 add B(core(f)) to H
9 forall v ∈ V do

10 if v is a Voronoi vertex then
11 add B(core(v)) to H

12 forall f, g ∈ V and B(V (f)) ∩B(V (g)) 6= ∅ do
13 List← all Voronoi vertices in B(V (f)) ∩B(V (g))
14 forall v ∈ List do
15 p← a tr-path from f to v
16 p′ ← part of p that is outside cores of f and v
17 Add p′ to H
18 Do the same between g and v

19 forall face h ∈ H do
20 nh ← the number of vertices of G that lies inside of h
21 weight(h)← nh/n

22 Apply Miller’s algorithm[Mil86] on graph H
23 return result

Proof of Correctness. We divide the algorithm into 2 separate cases. The first case (line 2 - 6)
focuses on finding any Voronoi region that has more than n/3 vertices. Assume there is one f

13

found such that |V (f)| ≥ n/3, then a subgraph GV (f) induced by V (f) will be passed into Lipton
and Tarjan’s algorithm. By assigning the cost of each vertex with 1/n, we will have the graph
GV (f) that has non-negative vertex costs summing to no more than one. Thus, by theorem 6, a
(2/3)-separator can be calculated for graph GV (f). Here, we denote two sides separated to be V 0

and V 1, where |V 0| ≤ |V 1|.
Since |GV (f)| ≥ n/3, if we consider the smaller side V 0, we know that

|V 0| ≥ 1/3 ∗ n/3 = n/9

Thereby, the separator will be an (8/9)-separator for input graph G for the first case.
For the second case (line 6 - line 22), the algorithm focuses on building a subgraph H that

can be used in Miller’s algorithm. From Theorem 7, the following conditions are required for its
algorithm to output a 2/3-cycle separator: (i) weights sum to 1, (ii) every weight in H is no larger
than 2/3.

From line 19 - 22, it is clear that the way we assigned weights will fulfill the first requirement.
Since no V oronoi region in G′ has a size larger or equal to n/3, we know that the faces added by
line 7 - 11 will not cover more than 2/3n vertices in G. For other faces that are added by line 12
- 19, they can not be a subset of more than two V oronoi regions, which means that the vertices
that each of them covers can not be larger than 2/3n. Based on the way we assign weights, we
know that no weight will be larger than 2/3.

Therefore, Miller’s algorithm will output the correct result.

Proof of Space Complexity. First, we are going to prove that Lipton and Tarjan’s algorithm will
take a BFS tree with the diameter O(k) in Õ(k)-space and polynomial time. Then, we will show
that the subgraph H has O(n/k) faces and each face has O(

√
k) vertices.

Given |Nk(f)| = k, it takes O(k) space to construct the BFS tree of Nk(f). From Definition 7,
we know that Nk(f) ⊆ V (f). For any g ∈ V (f) and g /∈ Nk(f), a new BFS tree can be constructed
on Nk(g). By finding the common tr-vertex f ′ ∈ Nk(f)∩Nk(g) with the smallest distance between
f ′ and g, we can add the partial path to the BFS rooted by f . Thereby, the computation can be
done in Õ(k) space and the BFS tree has O(k) depth.

For each face in H, if it is added by line 7-11, by Definition 6, we know that its size cannot
be larger than

√
k. For any tr-vertex g ∈ Nk(f) and g /∈ core(f), there will be at least

√
k other

tr-vertices that have the same distance to f . Thereby, there always exists a tr-vertex f ′ such that
tr-dist(g, f ′) ≤

√
k, which makes all the faces added by line 12-18 have a size O(

√
k).

For the number of faces, we know that the total number of faces added by line 7-11 will be
bounded by |I|, which is O(n/k). For the faces added by line 12-19, all of them consist of two cores
and two Voronoi vertices, which makes the total amount bounded by O(n/k) as well.

Therefore, by theorem 6 and 7, we could have both algorithms running in O(
√
n) space by

setting k =
√
n.

14

Algorithm 8: ExtendReach(M, r)

Input: M : A sequence of triples of a binary label, a cycle-separator, and an additional
triangulation edge list
r: search range

Global: A: A list of vertices, initialized to be {s, t}
R: A list of booleans that represent whether the vertex in A is reachable. It is
initialized to be {True, False}

1 if |[G]M | < 144c2sep then

2 Rt ← {u ∈ A|R[u] = True}
3 forall vertex v ∈ A do
4 Perform a BFS search in G[A ∪ VM]bounded with range r from some u ∈ Rt to v
5 R[v]← True if v is reached

6 else
7 Use CycleSep and AddTri to create a new cycle separator St+1 of [G]M and its

additional triangulation edge lists T 0
t+1 and T 1

t+1;
8 S′t+1 ← St+1 −A
9 A← A ∪ S′t+1

10 R[v] = False for all v ∈ S′t+1

11 forall i ∈ [1, 2r − 1] do
12 ci ← σs[i]
13 ExtendReach(〈M ∪ (0, St+1, T

0
t+1)〉, ci)

14 ExtendReach(〈M ∪ (1, St+1, T
1
t+1)〉, ci)

15 A← A− S′t+1

Theorem 10 ([AKNW14]). For any input instance G, s, and t of the planar directed graph reach-
ability problem, their planar graph reachability algorithm determines whether there is a path from
s to t in G in Õ(

√
n)-space upper bound and polynomial-time.

Proof of Correctness. The algorithm separates the situations into two cases based on |[G]M |. For
the first case, which is when |[G]M | < 144c2sep, the algorithm is straightforward. We can be
guaranteed that if v is within range r from any reachable nodes in A ∪ VM , R[v] will be set to
True.

If there exists a path p that reaches t from s, it is possible to divide path p into x sub-paths
such that (i) (Head(pi) ∪ Tail(pi)) ⊂ (A ∪ St+1) for i ∈ [1, x], (ii) Tail(pi) = Head(pi+1) for
i ∈ [1, x− 1], (iii) for any sub-path, its internal nodes are all on the same side of the separator. If
we set r = 2s ≥

∑
|px|, then by the attribute of the universal sequence σs, we know that there is a

sub-sequence from σs as 〈c1, c2, ..., cx〉 that |pi| ≤ ci for i ∈ [1, x]. Thereby, R[v] will be set to True
because of the induction.

Proof of Space Complexity. In the algorithm, A is considered as a global variable and will take the
most amount of space since its size will keep increasing with the depth of the recursion. If we
calculated the upper bound of |A|, we have:

|A| ≤
∑

i∈[1,tmax]

|Si|+ 2 ≤
∑

i∈[1,tmax]

csep
√
ni + 2

15

where ni ← |VM | at depth i recursion. We know that when |VM | ≥ 144c2sep:

|V b| ≤ 2

3
|V |+ csep

√
|V | ≤ 3

4
|V |, b ∈ {0, 1}

Thereby,

|A| ≤
∑

i∈[1,tmax]

√(
3

4

)i−1
n+ 2 ≤ (csep

√
n)
∑
i≥0

(
3

4

)i/2

+ 2 = O(
√
n)

Proof of Time Complexity. We let N(t, 2s) denote the number of recursion calls at depth t with
r = 2s. If we let tmax to be the maximum of depth for recursion, we have:

N(t, 2s) =


0 t = tmax

2 + 2N(t+ 1, 2s) s = 0, t < tmax

2
∑

i∈[1,2s+1](1 +N(t+ 1, ci)) Otherwise

Hence, we get the following equations:

N(t, 20) ≤ 2tmax−t+1

N(t, 2s) = 2N(t+ 1, 2s) + 2N(t, 2s−1)

By induction, we can show that:

N(t, 2s) ≤ 2tmax−t+s+1

(
tmax − t+ s

s

)
Therefore, the number of calls are polynomial bounded. Because we know that all processes for

one recursion are within polynomial time, the total time upper bound is polynomial-time bounded.

7 Algorithm on Surface-Embedded Graphs

In this section, given an input graph G embedded on a surface S where every face is homeomor-
phic to an open disk, we introduce a reduction method that strongly follows [SV10]. If we let A(x)
represent a deterministic log-space algorithm that will output y such that y → x is an edge, we can
define the forest decomposition of G with FA = {(y, x) : x ∈ V (G)−{s, t}∪ {source vertices}, y =
A(x)}. Thereby, each connected component will be a tree rooted at a source vertex, and the tree
will be called a source tree. If we have vertices x and y in some source tree T , the tree curved at
xy is the curve on S formed by the unique undirected path in T from x to y. For a given FA and a
path P = 〈x1, ..., xk〉 in G, P will be called irreducible if whenever there are xi, xj ∈ FA ∩ P , and
i < j, P follows the tree edges in FA from xi, xj .

If we have a closed curve C on S and removal of C disconnects S where at least one of the
components is homeomorphic to a disk, curve C is defined as contractible. We denote an edge
x→ y to be local if (i) x and y are on the same source tree in F , (ii) the closed curve formed by xy
and tree curve at xy are contractible, and (iii) there is no source on the interior surface. Otherwise,
xy will be a global edge.

16

Definition 8. We define two global edges x → y and y → z are topologically equivalent if the
following two conditions are satisfied:

• They span the same source tree in F

• The closed curve in underlying undirected graph formed by edge xy, tree curve from y to z,
edge zw, and tree curve from w to x bounds a connected portion of S, which we denoted as
D(xy,wz).

Let E be an equivalence class of global edges that contains an edge e that spans two different
source trees. We denote Ei to be the ith equivalence class that contains global edges that are lexico-
graphically smaller than e and are lexicographically-least in their equivalence classes. Accordingly,
we define the region enclosed by Ei as R[Ei] = ∪e1,e2∈EiD(e1, e2).

Definition 9. We define the patterns to be the way that an irreducible path P shares the same
edge with Ei. Specifically, every pattern consists of 〈X,Y, Z〉, where X ∈ {R,L} represents whether
the path enters Ei in left(L) or right(R) directions, Z ∈ {R,L} stands for the directions that the
path exits Ei, and Y ∈ {S,X} represents whether the path enters and exits at the same(S) or
different(X) ends. We denote N to be the full set of patterns.

Note: Among all patterns, a path cannot enter and exist at the same end with different direc-
tions, which indicates that 〈L, S,R〉 and 〈R,S, L〉 are impossible. For the remaining six patterns,
if the path enters and exists from different ends at the same direction, we call the pattern nesting.
Otherwise, the pattern will be full.

Definition 10. Given a DAG G, a pattern description is a tuple x = (i, t, o, p), where i ∈
{1, ..., k}, t ∈ {A,B}, o ∈ {+1,−1}, p ∈ N . Specifically, i represents the index of equivalence
class Ei; t represent the end of R[Ei] that contains the entrance; o represents the orientation of the
path with respect to the local orientation of the tree on the t-side of Ei; and p represents the pattern
used in Ei. We denote Vp to be the set that contains all pattern descriptions.

Note: For a given description x, we denote the incoming and outgoing edges in Ei with einx and
eoutx .

Let G(m, g) denote the class of planar DAGs with at most m sources vertices embedded on a
surface of genus at most g. Given a DAG G and its forest decomposition F , the pattern graph
P (V ′, E′) is defined as follows. The vertex set V ′ = {s′, t′} ∪ Vp = {s′, t′} ∪ ({1, ..., k} × {A,B} ×
{+1,−1} × N). For two pattern descriptions x, y ∈ Vp, an edge x → y is in E′ if and only if
there exists an adjacency certificate with a list of nesting pattern descriptions z1, ..., zl, so that the
following two conditions hold:

• There is an irreducible path from Head(eoutx) to Tail(einy) which induces the sequence z1, ..., zl
of nesting pattern descriptions.

• For each j ∈ {1, ..., l}, Tail(einzj) is not reachable from Head(eoutx) using irreducible paths that
induce the pattern descriptions z1, ..., zj−1.

Moreover, for a description x = (i, tx, o, p) there is an edge s′ → x in E′p if and only if x has
the tx-end in the source tree of s. Also, there is an edge x→ t′ in E′p if and only if the class Ei is
incident to s, tx is the other end of the class, and p ∈ {〈RXL〉, 〈LXR〉}.

17

Theorem 11 ([SV10]). There is a log-space reduction that, given an instance < G, s, t > where
G ∈ G(m, g) and s, t are vertices of G, outputs an instance < G′, s′, t′ > where G′ is a directed
graph and s′, t′ vertices of G′, so that

• there is a directed path from s to t in G if and only if there is a directed path from s′ to t′ in
G′,

• G′ has O(m+ g) vertices.

Proof of Correctness. (Forward)If there exists an irreducible path P from s to t, P will induce a
sequence of pattern descriptions x1, ..., xl where there are edges from s to x1 in the source tree of
s. Thereby, there will be edges from s′ to x1. The same methods will be applied to xl → t′.

For a given pattern description of full type x centered at an edge class Ei and two vertices
y, z /∈ R[Ei], we can prove that there is a path from y to z using only local paths if and only if there
are local paths at the same direction as x from y to the entrance of x and from the exit of x to z. If
we have full pattern xi+1 induced after xi, we can show that einxi+1

is reachable by a local path from

eoutxi
. If the next full pattern after xi is xi+j where j > 1, we let z1, ..., zj−1 denote the intermediate

nested patterns between xi and xi+j . If the nested patterns compose an adjacency certificate, then
xi → xi+j exists in G′. Otherwise, there must be a k ∈ [1, j−1] such that zk violates the adjacency
certificate. Assuming k is the smallest index among all patterns that break the adjacency, we know
that there is an edge from xi to zk in G′. It can also be proved that Tail(einxj

) is reachable from

Head(eoutzk
) by an irreducible path. Therefore, by several iterations, t′ is reachable from s′ in G′ if

there is a path from s to t in G.
(Backward) For a path P = 〈s′, x1, ..., xj , t′〉 in G′, with the similar methods, we can show that

there is either a local path or an irreducible path from xi to xi+1, for i ∈ [1, j− 1]. Since x1 will be
in the source tree of s′, it is reachable by s. The same applies to the edge xj → t′ as well.

For the graph G with m sources embedded on a surface S with g genus, by Euler’s formula, it
can be proved that there are O(m + g) equivalence classes of global edges. Since we add pattern
descriptions by a constant multiple of equivalence classes, the number of vertices will be O(m +
g).

Proof of Complexity. Given a pattern description x, we want to show that there is an algorithm
that enumerates the pattern descriptions reachable by an edge in G′ in log-space.

For a vertex v in a source tree, there is an ordering Ei0 , Ei1 , ..., Eil of edge classes that are
reachable by an irreducible path from v. For j ∈ [1, l − 1], Eij can be fully reached. Since v is in
the interior of R[Ei0], Ei0 will not be fully reached. As a result, for each pattern y centered at Eij

with j ∈ [1, l− 1], einy is reachable from v. Hence, to enumerate all reachable patterns by x, we call
the above methods with v = eoutx and add edges from x to all reachable patterns centered at Eij .
Eil can be fully reached if we record the furthest edge and repeat the call another time. Therefore,
the reduction will take a log-space.

8 Open Problems

Apparently, solving STCON in polynomial time and O(log n) space remains the biggest chal-
lenge for the connectivity problems. In this survey, we discussed several algorithms for certain
kinds of directed graphs. For the entire set of directed graphs, BBRS’s algorithm still seems to be
the most optimal solution.

18

Moreover, we think the attributes of unique-path graphs and reach-unambiguous graphs share
significant similarities. If a broader definition can cover both kinds of graphs and a mix of both
algorithms can handle all different cases, there might be an improvement of space upper bounds
with a larger range of directed graphs.

9 Acknowledgement

This is the Senior Honors Thesis written by undergraduate Huanran Li at the University of
Wisconsin-Madison, under the guidance of Professor Dieter van Melkebeek.

References

[AKNW14] Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√
n)

-space and polynomial-time algorithm for planar directed graph reachability. In Inter-
national Symposium on Mathematical Foundations of Computer Science, pages 45–56.
Springer, 2014.

[AL98] Eric Allender and K-J Lange. RUSPACE (log n) ⊆ DSPACE(log2 n/ log logn). Theory
of Computing Systems, 31(5):539–550, 1998.

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Information
and Computation, 189(1):117, 2004.

[BBRS98] Greg Barnes, Jonathan F Buss, Walter L Ruzzo, and Baruch Schieber. A sublin-
ear space, polynomial time algorithm for directed st connectivity. SIAM Journal on
Computing, 27(5):1273–1282, 1998.

[INP+13] Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, NV Vinodchandran, and Osamu
Watanabe. An o(n1/2+ε)-space and polynomial-time algorithm for directed planar
reachability. In 2013 IEEE Conference on Computational Complexity, pages 277–286.
IEEE, 2013.

[KKR08] Sampath Kannan, Sanjeev Khanna, and Sudeepa Roy. STCON in directed unique-
path graphs. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2008.

[LT79] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[Mil84] Gary L Miller. Finding small simple cycle separators for 2-connected planar graphs. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
376–382, 1984.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),
55(4):1–24, 2008.

[SV10] Derrick Stolee and NV Vinodchandran. Space-efficient algorithms for reachability in
surface-embedded graphs. Electonic Colloquium on Computational Complexity, 2010.

19

