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Problem: Visualizing Subspaces

Subspaces are a cornerstone of data analysis, with applications ranging from linear
regression to principal component analysis (PCA), low-rank matrix completion (LRMC),
computer vision, recommender systems, classification, and more. However, there exist
few tools to visualize the Grassmann manifold G(m, r) of r-dimensional subspaces of
Rm. In this paper, we propose a method that visualizes a collection of points in the
Grassmannian (subspaces) through an embedding onto the Poincaré disk D⊂ R2.

Classic Misleading Method for Grassmannian

The most intuitive of such visualizations is the representation of G(3,1) as the closed
half-sphere where each point in the hemisphere represents the 1-dimensional sub-
space (line) in R3 that crosses that point and the origin (see Figure 1). While intuitive,
this visualization bears certain limitations:

1. This representation wraps around the edge, so geodesic distances can be deceiv-
ing. For instance, two points (subspaces) that may appear diametrically far may
in fact be arbitrarily close (see Figure 1).

2. But more importantly, the main caveat of this semi-sphere representation is that it
is unclear how to generalize it to m > 3 or r > 1, which makes it quite restrictive,
specially for analysis of modern high-dimensional data.

Fig. 1: Classical 3D Representation of the Grassmannian G(3,1).

Poincaré Disk

The Poincaré disk is a 2D hyperbolic geometric model, usually displayed as a unit
circle where the geodesic distance between two points in the disk is represented as
the circular arc orthogonal to the unit circle, which corresponds to the projection of the
hyperbolic arc of their geodesic. This unique feature brings several advantages:

1. It can accurately represent the global structure of complex hierarchical data
while retaining its local structures. Since its hyperbolic arcs get larger (tending
to infinity) as points approach the disk boundary, the disk can be viewed as a
continuous embedding of tree nodes from the top of the tree structure.

2. It has a Riemannian manifold structure that allow us to perform gradient-based
optimization, which is crucial to derive convergence guarantees, and for parallel
training of large-scale dataset models.

Fig. 2: Geodesics in the Poincaré disk D.

Our Method: GrassCaré

Figure 3 is a demonstration of how GrassCaré can be applied to visualize high-dimensional object
trajectory in the motion segmentation task.
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Fig. 3: GrassCaré on Motion Segmentation Dataset (Hopkins155). Left: Video of 2 objects (blue, fuchsia) and backgrounds (green).

Right: GrassCaré Optimization Process (Random Initialization to Final embeddings).

To accomplish that, the embeddings are calculated with those three steps:

1. Compute a Grassmannian probability matrix PG ∈ [0,1]N×N whose (i, j)th entry represents
the probability that subspace Ui is chosen as a nearest neighbor of Uj:

[PG]ij :=
1
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where dG(Ui,Uj) denotes the geodesic distance on Grassmannian, and γi is the variance of
distances from point i to other points.

2. Create the Poincaré probability matrix PD ∈ [0,1]N×N, whose (i, j)th entry represents the
probability that embedding point pi is chosen as a nearest neighbor of pj:

[PD]ij :=
exp(−dD(pi,pj)
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where dD(pi,pj) denotes the distance between pi,pj on the Poincaré disk.

3. Maximize the similarity between the two distributions PG and PD, which we do by minimizing
their Kullback-Leibler (KL) divergence:

min
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[PG]ij
[PD]ij

.

Theoretical Result

Theorem 1. Suppose N > 3. Define γ := mini γi and Γ := maxi γi. Let {U1, . . . ,UK} be a cluster
partition of {U1, . . . ,UN} such that |Uk| ≥ nK > 1 ∀ k. Let
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2γ
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Then the optimal loss of GrassCaré is upper-bounded by:

L⋆ < logD+
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,

where
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.

Comparison

The effectiveness of a visualization can be evaluated using the concept of represen-
tation error, which is calculated as the Frobenius difference between the geodesic
distance of the subspaces and the distance of corresponding points in the embed-
ding. In the case of GrassCaré, distances in the embedding are measured according
to the Poincaré geodesics, so the representation error of the GrassCaré embedding
will be measured as:

ε
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,

where Z2
G = ∑i,j d2

G(Ui,Uj) and Z2
D = ∑i,j d2

D(pi,pj) are normalization terms. Like-
wise, in all other methods where the objective is to minimize the Euclidean distance,
dD(pi,pj) is substituted with ||vi−vj||2. We generate 50 subspaces in 3 clusters with
different values of ambient dimension m and rank r. The results of 100 trials are
summarized in Figure 4, which confirms the superiority of our GrassCaré embedding.
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Fig. 4: Representation error of GrassCaré and other methods for high-dimensional Grassmannians G(m, r).

Remarks

We anticipate that GrassCaré will prove to be an effective tool for visualizing sub-
spaces obtained from real-world data in high dimensions. In our experiments, we
observed that GrassCaré is slightly slower than t-SNE and GDMaps, due to the
additional calculations involved in computing distances in the Poincaré disk compared
to Euclidean space. However, we believe that this added computation time is a rea-
sonable trade-off for two reasons:

1. Our experiments have demonstrated that GrassCaré produces a more accurate
visual representation. Moreover, its theoretical lower bound reinforces our belief
in its accuracy.

2. GrassCaré makes better use of the unit circle’s space, which eliminates the visual
distortion caused by the different axis scales in GDMaps. This leads to a more
reliable and informative visualization.
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